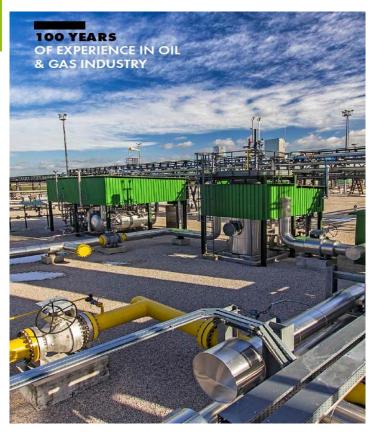
26th World Gas Conference

1 – 5 June 2015, Paris, France



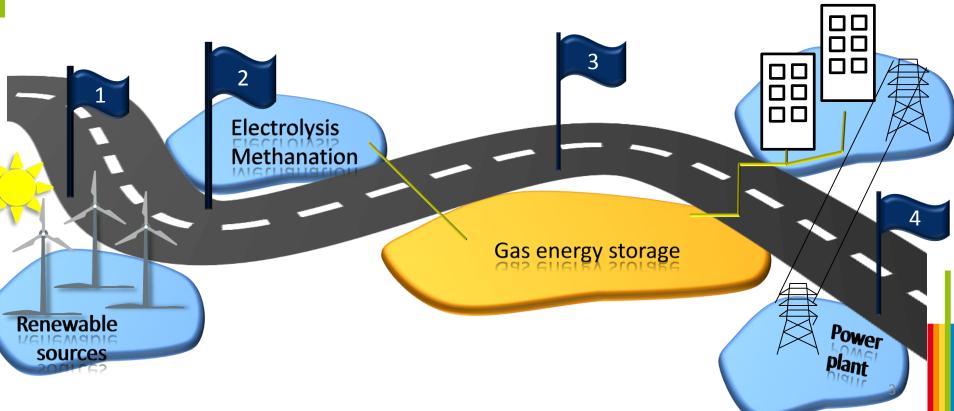
UTILIZING WASTE HEAT IN A GAS RESERVOIR ENVIRONMENT

Zavada Roman NAFTA a.s.

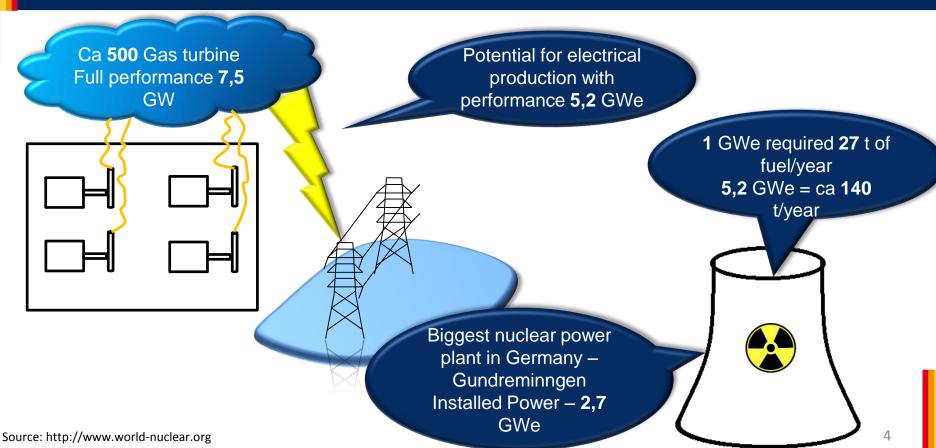
INTRODUCTION OF NAFTA a.s.

- Modern and innovative company
- Key underground gas storage operator in Slovakia – NAFTA's current storage capacity amounts to 2,5 bcm
 - Max Withdrawal Rate 38,3 mcm/d
 - Max Injection Rate 31,9 mcm/d
 - Technical operator of UGS for third party

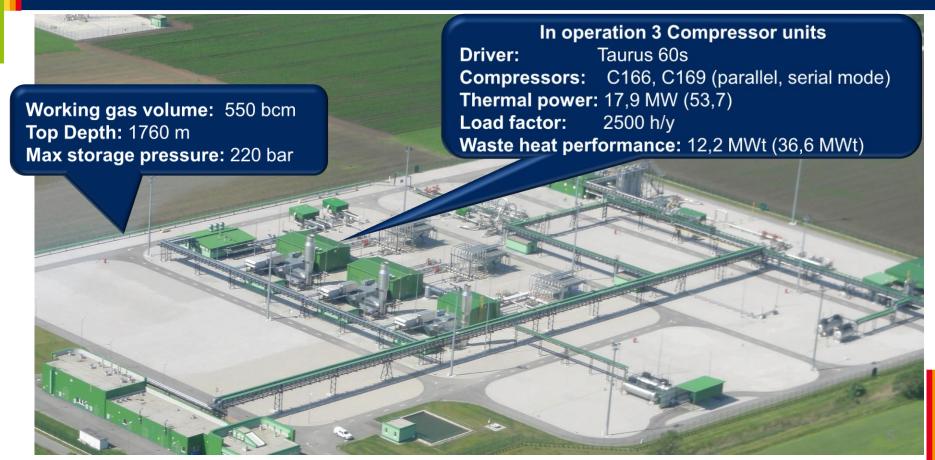
SPOZAÇAS



- More than 40 years experiences with gas storage and 100 years with exploration and production of hydrocarbons
- Partner of RAG in project SunStorage

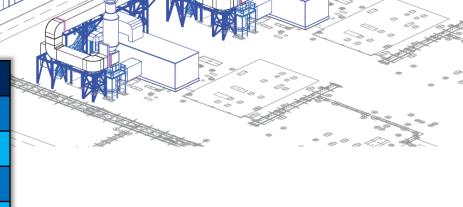


Introduction

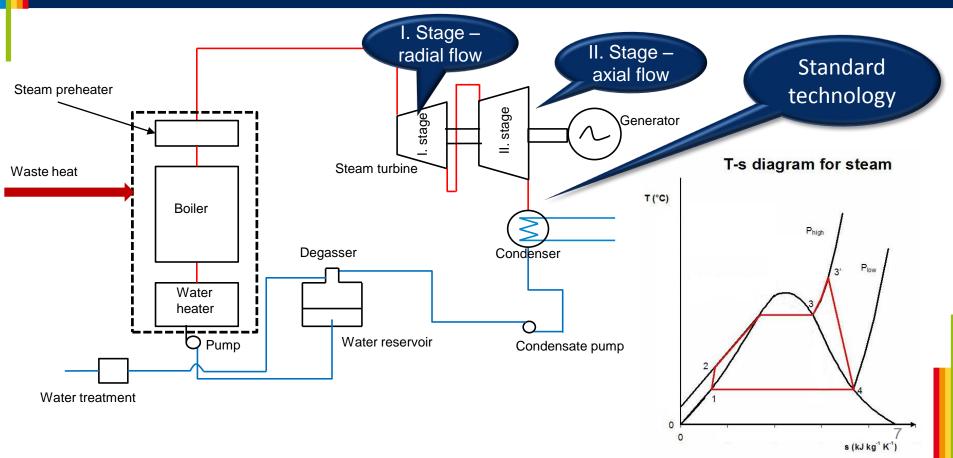

Natural gas and electricity are exchangeable sources, but gas is storable

Waste heat recovery – Situation in the Europe

UGS Gajary Baden Slovakia


Feasibility study for using waste heat at UGS Gajary Baden

Methods


- Water steam cycle
- ORC cycle

Design parameters of waste heat	
---------------------------------	--

Exhaust gas temperature	517 °C
Exhaust gas flow	40,8 kg/s
Exhaust gas pressure	5000 Pag
Possible pressure drop in	1500 Pa

Water steam cycle

Water steam cycle

Design parameters I. stage	
Water steam temperature	440 °C
Inlet water steam pressure	38 bar(a)
Water steam flow	18,2 t/h
Discharge water steam pressure	2,0 bar(a)
Discharge water steam temperature	178 °C

Design parameters II. stage	
Water steam temperature	178 °C
Inlet water steam pressure	1,9 bar(a)
Discharge water steam pressure	0,13 bar(a)
Discharge water steam temperature	50 °C

Design parameters - generator	
RPM	1500
Terminal power	3790 kWe

Steam turbine

- Simple double stage steam turbine
- Lower thermodynamic efficiency by 11 % compare to the multistage steam turbine
- Advantages of this type of steam turbine:
 - Small compact device
 - Quick start from cold state
 - Sealing system is not needed

Water steam cycle

Condenser

- Air cooler lack of water in the area
- Large size due the noise emission limits
- Control of air cooler by VFD

Other technological devices

- Cooling for steam turbine oil circuit
- Chemical water treatment
- Thermal water treatment
- Control system

ECONOMICS		
Investment costs	8 400 000 €	
Operation costs	€6/MWh	
Sales prices of electricity	€ 40 / MWh *	
Load factor	2500 hours / year	
Simple payback	20 years	

Higher load factor 6000 h/year

Decreasing technology price

Higher efficiency

Organic rankine cycle

Advantages and disadvantages com

Higher price of organic fluid

Lower vaporization heat

Some of them are hard

Lower vaporization te

Simple construction of

Economically not feasible, compared to water steam Lower terminal power cycle

Similar capex

ycle	Waste heat	
	Oil heater	
oil	0	il
	Evaporator	Turbine with generator
Pump	Regenera Condenser	7

Design parameters		
Used organic fluid:	n-Hexane	
Organic steam temperature	120 °C	
Organic steam pressure	248,1 kPa	
Organic steam flow	66 t/h	
Terminal power	1100 kWe	

Economics		
Investment costs	9 000 000 €	
Operation costs	€6/MWh	
Sales prices of electricity	€ 120 / MWh *	
Simple payback	N/A	

- State subsidized energy prices
- Prices are related to 2013

Conclusion

Water steam cycle and also ORC cycle are technically feasible but not commercially

> Waste heat is still produced and also will be produced in the future

We are still looking for the solution, how to use this waste heat, because we have to care to use energy sources more efficiently

Thank you for attention!

Roman Zavada

NAFTA a.s.

Tel.:+421 34 697 4787

e-mail:roman.zavada@nafta.sk

www.nafta.sk

